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Abstract

A Local Partial Inertia (LPI) technique has been developed as part of the National
Weather Service (NWS) dynamic flood routing model (FLDWAV) to enhance its -
capability to model unsteady flows in the subcritical/supercritical mixed-flow regimes
especially in the near critical range of the Froude number. By applying a simple
numerical filter (0) to the inertial terms in the unsteady flow momentum equation
according to the local Froude number, the LP! technique retains the essential accuracy
associated with dynamic routing models and provides stable numerical solutions for
mixed flows for the four-point implicit numerical scheme used in the FLDWAV model.
This paper briefly introduces .the LP! technique and presents an application of the
technique to a dam-break-induced flood wave which is routed through a river reach
which experiences mixed-flow.

Introduction

The NWS FLDWAYV model is a generalized flood routing model which is based
on an implicit, weighted, four-point, nonlinear, finite-difference solution of the one-
dimensional unsteady flow (Saint-Venant) equations. FLDWAV combines the
capabilities of the popular NWS DAMBRK and DWOPER models (Fread, 1993) and
provides additional features such as: (1) a multiple levee overtopping/crevasse option,
(2) a multiple-reach routing algorithm which enables the application of different
routing techniques (implicit, explicit, level-pool, diffusion, etc.) to specified
subreaches, and (3) a new network solution algorithm for any dendritic river system.
A new feature of FLDWAV, presented herein, uses an LPI solution technique for
modeling "mixed" (subcritical and/or supercritical) flows in specified subreaches.

Among the various capabilities of the FLDWAV model, dam-breaching analysis
and dynamic routing of the dam-break induced flood wave are two very useful tools in
dam safety related studies and applications. One challenge in modeling the dam-
break-induced unsteady flows is that mixed flow regimes and moving interfaces
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(subcritical/supercritical or conversely) may occur in certain situations, e.g., the flow
from a near-instantaneous breach of a large dam is routed through a channel with a
mild slope. When modeling unsteady flows, the dynamic technique using the four-
point implicit numerical scheme tends to be less numerically stable than the diffusion
(zero inertia) routing technique for certain mixed flows, especially in the near critical
range of the Froude number (F,) or mixed flows with moving supercritical/subcritical
interfaces. It has been observed that the diffusion technique, which eliminates the
two inertial terms in the momentum equation, produces stable numerical solutions for
flows where F, is in the range of critical flow (F,=1.0). To take advantage of the
stability of the diffusion method, and retain the accuracy of the dynamic method, a
“local partial jnertia” (LPI) technique has been developed within the NWS FLDWAV
model in which a numerical filter (0) modifies the extent of contribution of the inertial
terms in the momentum equation so that its properties vary from dynamic to
diffusion.

LPI Technique

The FLDWAV model is based on a four-point, implicit, numerical, solution
scheme of the Saint-Venant unsteady flow equations (Fread, 1993):
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in which t is time, x is distance along the longitudinal axis of the waterway, h is the
water surface elevation, A is the active cross-sectional area of flow, A, is the inactive
(off-channel storage) cross-sectional area of flow, q is the lateral inflow or outflow, B
is the coefficient for nonuniform velocity distribution within the cross section, g is the
gravity constant, S; is the friction slope, S, is the slope due to local expansion-
contraction (large eddy loss), and L is the momentum effect of lateral flow (L=-qv, for
lateral inflow, where v, is the lateral inflow velocity in the x-direction; L =-qQ/(2A) for
seepage lateral outflows; L =-qQ/A for bulk lateral outflows). The first two terms in
the momentum equation, Eq.(2), are the inertial terms.

In the LPI technique (Fread, Jin, and Lewis, 1996), the momentum equation,
Eq. (2), is modified by a numerical filter, g, so that the inertial terms are partially or
totally omitted according to the local flow condition as defined by the local Froude
number. The modified momentum equation and the numerical filter are:
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in which F, is the Froude number and m is a user specified constant. Figure 1 shows
the variation of the filter, 0, with F, and with the value of m. The o filter, which
depends on F,, has a variation that ranges from a linear function to the Dirac delta
function. Since the Froude number is determined at each computational point (each
cross section and instance of time), 0 is
a “local” parameter. Therefore, portions
of the routing reach with low Froude
numbers will be modeled with all or
essentially all of the inertial terms
included, while those portions with F,
values in the vicinity of critical flow will
be modeled with “partial inertial” effects
included; supercritical flows (F, > 1) will
be modeled with no inertial effects. It is
found that smaller values of m tend to
stabilize the solution in some cases
while larger values of m provide more
accuracy. By using the o filter, the
FLDWAV model automatically changes 00 5 0 " Y L0
from a dynamic model to a diffusion

model and takes advantage of the
stability of the diffusion model for those
flows with F, near the critical value of
1.0.

The error properties of the LPI technique, which totally or partially omit the
inertial terms of the momentum equation, have been theoretically analyzed and
numerically tested. It has been shown that the proportional contribution of the inertial
terms, noted as IT (which is the inertial terms divided by the water surface slope), to
the total momentum equation depends on the flow Froude number and another
dimensionless parameter, $. The term, IT, can be shown to be related to the Froude
number (F,) and ¢ as follows:
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in which n is the Manning's resistance coefficient, and A is the constant in Manning's
equation (A=1.49 for English system of units and A=1.0 for S| units). The new
parameter (¢), reflects the flow’s unsteadiness and hydrauiic condition. Further
analysis (Fread, Jin, and Lewis, 1996) has shown that IT is a very small term (usually
less than 4% of the total momentum equation) and that IT decreases rapidly as the ¢
value increases and F, approaches 1.0; therefore, Eq. (2) is very closely approximated
by Eq. (3) in most unsteady flow conditions.

Figures 2 and 3 show some test results of the computational errors for the LPI
technique. The errors are considered as differences between the results of using the
complete momentum equation (dynamic routing) and the resuits of using the LPI
modified equation. Numerical experiments compare the results from both methods for
a broad range of unsteady flow conditions, and two kinds of errors are examined. The
error E;, (%), as shown in Figure 2, is the maximum normalized error in the computed
peak profiles; the error E,,, (%), as shown in Figure 3, is the normalized root-mean-
square (RMS) error in the computed hydrographs. These resuits show that the overall
errors in using the LPI technique are very small (less than 2%) for most situations (d
>10) and less than 6% for special situations (5<9<10) which are only applicable for
near instantaneous large dam-failure induced floods in channels of very flat bed
slopes.
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Figure 2 Errors in the computed peak flow Figure 3 RMS errors in computed hydrographs



Application

The LPl-enhanced FLDWAV model is applied to a dam-break situation. A 120 ft
high dam is breached within 0.5 hours. The reservoir stores about 1.15 x 10° acre-ft
of water; and level-pool storage routing and the dynamic routing are used upstream
and downstream of the dam, respectively. The dam-break-induced flood wave travels
through a 37.2-mile reach of an extremely non-prismatic channel, with a bottom slope
varying from 0.0230 (124 ft/mile) immediately below the dam to 0.0054 (28 ft/mile)
at the downstream end of the reach, and the Manning's n varies from 0.07 upstream
to 0.04 downstream. Mixed and near-critical flow occurs in some steeper portions of
the reach when the flow changes from the initial low flow to its peak, and
subcritical/supercritical moving interfaces are present as the flood peak moves
downstream.

This near-critical mixed flow and
moving interface causes numerical
stability problems when using the
conventional four-point implicit scheme.

A special mixed-flow algorithm (Fread, : e :;g:rr i':‘: ti‘;’l‘;ﬂ“"
1992) developed earlier in the FLDWAYV N T Ew

model which divides the entire routing N

reach into a series of subcritical and
supercritical subreaches by searching for
the transitional control points at each
time step also failed for this nearly
critical mixed-flow situation. Figure 4
shows computed water surfaces for the
reach between x =25 and x =30 miles at
the times t=1.20 hour and t=1.30 hour
at which the special mixed-flow
algorithm failed. The resuits from three Figure 4 Computed water surfaces
techniques are shown in this figure, they

are: (1) the special mixed-flow algorithm, (2) the new LPI technique presented herein
and (3) a characteristic-based, upwind, explicit, dynamic routing technique (Jin and
Fread, 1995) which is available in the FLDWAV model to simulate nearly
instantaneous dam-failure-induced flood waves and near-critical mixed flows. The
explicit scheme has been tested successfully for its performance in modeling near-
instantaneous dam-break waves and mixed flows. It is observed that the LPI and the
explicit techniques simulate the wave front similarly while the special mixed-flow
method generates very different surface profiles and becomes unstable before it fails.

Using the new LPI technique with m =5, the FLDWAV model produces stable
and smooth solutions for the dam-break induced flood wave simulation. Some
computational results are shown in Figures 5 through 8. In these figures, the results
from the LPI technique are also compared with those obtained from the explicit
scheme.

Water elevation (ft)

Distance x (mile)



g

£ Imp.(LPD . Exp. -
- RS . 1200 ____ Imp.(LPD
2300000 L : 1 x=5.0 mile (dam site) = ! / .
o) 2 x=223 <
@ 2000000 [° 3 x=309 g
3 n 3 4 x=40.1 2 )
~~ r Id
£ 1500000 [ : 3
E [ L]
3 F ]
1Z] . -
2 1000000 g
F .-‘
<
500000 &
o411 | [
0 2 4 6 8 10
Time (hour) Distance x (mile)
Figure 5 Computed hydographs Figure 6 Computed water stage peak profils
12, _ 13
- | L Imp. (LPI) ... Exp.
L1 Imp. (LPD) 12
o e Exp. L x=12
~ 10 ~ L1 .
& I A
= 09| e Lo x=5 (Dam site)
2 L 3 Y i
E os E
3 CL N o 3
Zz L g
S 07| °
= 3
3 b 2
Soosk N e <
os|
I T T T TR B — ‘ s
04 T T TR 0.0 20 40 6.0 8.0 10.0
Distance x (mile) Time (hour)
Figure 7 Froude number distributions Figure 8 Froude number variations

Figure 5 compares the LPl-computed dam-breach outflow hydrograph (at dam
site x =5 miles) and hydrographs at three locations along the routing reach with those
results from the explicit technique. The close agreement between the more
computationally efficient LPI technique and the explicit technique suggest that these
results are reliable.

Figure 6 shows the computational resuits of the peak water stage profile along
part of the routing reach. Close agreement between the LPI and the explicit results
are also observed.

One of the major difficulties in modeling this kind of mixed flow is that there is
often a subcritical/supercritical moving interface associated with the advancing flood
peak. The “mixed” flow regime changes not only with the time but also with space,
and the regime is often in the range of near-critical flow (Froude number approaching
1.0) which, by its nature, is physically unstable. Figure 7 shows the instantaneously
computed Froude number distributions along the routing reach for two specified times



(t=0.5 and t=1.0 hours). The interface between subcritical and supercritical flow is
indicated by the point in the distribution where the Froude number is equal to one. It
can be seen that the LPI technique is capable of modeling the interface which moves
from mile x=8 at t=0.5 hr to its location at mile x=16 at t=1.0 hr.

For a given location, the flow regime may change as the dam-break-induced
flood wave passes. Figure 8 show some computed results of the Froude number
variation with time for three locations (x=5, 12, and 35 miles). The flow regime at
the dam site is always subcritical, but near critical (F,=1). The flow regime at mile
x=12 is seen to change from subcritical to supercritical and then back to subcritical
after the flow peak passes. The flow regime at mile x =35 is always subcritical.

These results indicate that the LPI technique works well in modeling unsteady
flow of subcritical/supercritical mixed-flow regimes with moving interfaces and the
near critical flow regime.

Conclusion

The LPI technique, which filters the inertial terms in the one-dimensional
unsteady flow momentum equation according to the local Froude number, increases
the stability of the FLDWAV model to simulate near-critical subcritical/supercritical
mixed flows, including supercritical/subcritical moving interfaces, while retaining the
accuracy of dynamic modeling for subcritical flows. The application example
presented in this paper, and the comparison between the resuits of the LPI technique
and the characteristic-based upwind explicit technique, show that the LP!I technique
does very well in modeling mixed flows.
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